
Computer Networks and ISDN Systems 29 (1997) 163% I644

A World-Wide Web based distributed animation environment

Chungnan Lee * , Tong-yee Lee I, Tain-chi Lu ‘, Yao-tsung Chen
Institute of Computer and Information Engineering, National Sun Yat-Sen Uniuersity, Kaohsiung, Taiwan, ROC

Abstract

In this paper we describe the design of a distributed animation system built using the Java language, a Parallel Virtual
Machine platform, and the World-Wide Web. We focus on two aspects. One is the design of a platform to support
distributed 3D animation, the other is the improvement of the efficiency of the parallel computing. Due to the collaborative
and distributed nature of the Web, the Web browser is integrated with the distributed computing system like a Parallel
Virtual Machine. The model emphasizes the separation of interface and function. It provides a very friendly and portable
interface to manipulate the PVM console and the 3D animation system. To improve the efficiency of the parallel computing,
we propose a new load balancing strategy, called global distributed control to balance the load in the network processors.
The algorithm not only has the ability to dynamically adjust to the load imbalance, but also has the fault tolerance ability. It
performs the best when it is compared with three traditional load balancing schemes. Q 1997 Elsevier Science B.V.

Keywords: World-Wide Web; Distributed animation; Java; Ray tracing; Parallel virtual machine

1. Introductio~n

3D animation has many important applications in
areas such as film in$ustry, engineering simulation,
scientific visunllization, and fluid dynamics. How-
ever, it suffers from the need of huge computational
power and the lack of a collaborative environment.
The distributed computing can provide large compu-
tation power for scientific visualization, and the Web
can provide a highly portable display interface for
users to access network resources. As the access of
WWW network resources and use of WWW browser
to obtain information has grown tremendously in the

* Corresponding author. Email: cniee@mail.nsysu.edu.hv.
’ Current address: Deprtmeat of Computer Science and Jnfor-

mation Engineerin,g, National Cbeng-Kung University, Tainan,
Taiwan, ROC.

recent years, it is natural to incorporate the Web with
3D graphics and the distributed computing system
into a distributed 3D animation system. The system
allows users at different places to have interaction in
the design of 3D animation through the computer
network.

Hence, in this paper, we aim to develop an inter-
active, distributed 3D animation system across the
Internet using the Web browser, Java and Javascript
[l-4] and using a Parallel Virtual Machine (PVM) as
the distributed computing platform [5,6]. The two
main tasks are: the design of a friendly, interactive,
collaborative network environment and the design of
an efficient load balancing algorithm for ray tracing
that is of paramount importance to 3D animation.

Currently most of Web documents are written in
HTML and use the Common Gateway Interface
(CGI) to run the external application at the server

0169-7552/97/$1’7.OO 0 1997 Elsevier Science B.V. All rights reserved.
PII SO169-7552(97)00078-O

1636 C. Lee et al./ Computer Networks and ISDN Systems 29 (1997) 1635-1644

site. The output of the external program is sent back
to the client viewer. Instead of using CGI, we use
HTML, Java and the Javascript language to simulate
the PVM console in the WWW browser. Hence,
users can use a WWW browser, like Netscape Navi-
gator and Microsoft Internet Explorer, to connect a
PVM host machine from any network workstation or
a personal computer, and then be able to dynamically
set the parameters, such as viewpoint change, back-
ground color, resolution, etc., and display the render-
ing result. Consequently, users can discuss, activate,
and display the animation through the network. Java
and Javascript are object-oriented, multi-thread and
portable languages. Therefore, it is easy to build and
add function models to the distributed animation
system. The main purpose is to depart from the
traditional single-user manipulation system to dis-
tributed rendering images.

Ray tracing [7-121 has produced the most impres-
sive photorealistic images in 3D computer graphics
and is the key component to the animation, which is
widely applied to many areas. But tracing a realistic
image requires numerous light contributions to a
scene, and a large number of ray-object intersec-
tions needs to be calculated, it makes ray tracing
very computational intense. When the objects are
complex, it is difficult to maintain the sequential ray
tracing computation efficient. Therefore, researchers
have made great efforts to parallelize the graphics
rendering on parallel architectures or on a cluster of
workstations [9,11,12].

A PVM that can be a cluster of heterogeneous
workstations to be viewed as a single parallel sys-
tem, is used as the parallel computing platform.
However, users have to use command-driven PVM
console to add or delete computers in the parallel
virtual machine. It is neither efficient nor user
friendly. Alternatively, users can use a XPVM built
on the X-windows system to manipulate the PVM
system. However, it is limited to some machine
architectures, like SUN Spare, HP, and DEC work-
stations, the running of XPVM and the visualization
of the rendering. As a result, it makes difficult to
build a portable distributed environment. This moti-
vated us to built a distributed 3D animation system
that is not only efficient to render the 3D graphic
image in parallel, but also to provide a convenient
and interactive graphics user interface.

To speed up the rendering efficiency for the 3D
animation, the careful design of a load balancing
scheme is very important and has been a major issue
in network computing for ray tracing and other
applications. Hence, in this paper we also present a
new load balancing strategy, called global distributed
control. We show the results of comparison with a
couple of traditional load balance schemes, such as
the master-slave and the interleaved schemes [13-
181.

The rest of the paper is organized as follows.
Section 2 describes the system architecture. In Sec-
tion 3 we present a global distributed control algo-
rithm, performance evaluation, and results. Section 4
gives an overview of the system. The paper con-
cludes in Section 5 with suggestions for further
developments.

2. System architecture

Our distributed animation system is a client-server
architecture. In the client site, we use HTML incor-
porated with Java applet to implement a front-end
Graphical User Interface (GUI). With this arrange-
ment, the WWW browser accepts a user’s service
request and then executes a Java applet. This Java
applet will send the environment’s parameters to the
web server for further processing. For example, we
implement a GUI for the PVM software in the
WWW environment. The users use icon-driven GUI
provided by the Java applet to dynamically control
the PVM environment in the remote site. Then the
Java applet will send the web server environment’s
parameters to reconfigure PVM architecture. Note
that in our implementation, there is a socket-based
connection between the web server and PVM dae-
mon. This connection is in charge of passing PVM
parameters to the PVM daemon. With this design
philosophy, a user can easily obtain our service from
any kind of machine as long as he/she has an access
to the WWW browser. Our client-server system
architecture is shown in Fig. 1.

In Fig. 1, the user requests our service from
WWW browser. Then a Java byte code will be
shipped to the client site. The end-user can configure
the PVM heterogeneous computing environment by
adding or deleting computing hosts from our front-

C. Lee et al. /Computer Network and ISDN Systems 29 (1997) 163% I644 1637

Fig. 1. The high level block architecture of the distributed 3D
animation system.

end GUI. The Java applet establishes connection
with a remote PVM daemon through the socket
agent as inter-mediator and sends the system config-
uration to the PVM daemon. This PVM daemon later
will execute the pvm-addhosts routine to form a
virtual parallel machine that consists of the cluster of
hosts being added.

Similarly, we send the graphics rendering infor-
mation to our parallel ray tracer or send back the
rendering results to the WWW browser through the
same socket agent. Once the virtual parallel machine
is available, the rendering information, including the
parameters of the image data, is broadcast to each
processor by the ray tracer through the PVM dae-
mon.

3. AlgorithIn

In addition to developing new acceleration tech-
niques for ray tracing on sequential machines, re-
searchers have been devoted to parallelizing my
tracing on many experimental and commercial muhi-
processor machines [11,12,14,18-2 l]. However, only
a few work have been reported on the parallelization
of the ray tracing problem on a network of worksta-
tions. In this section, we first present the global
distributed control algorithm [14] to parallelize ray
tracing on networked clusters of workstations. Then,
we use an experimental protocol to evaluate the

Time

*“y .“9::.,...//
CRCRCR R

Where Rsending results, and C:timc for computation

Fig. 2. The communication mechanism for the first phase of the
GDC algorithm.

performance of the GDC algorithm and other meth-
ods [15]. Finally, we present the results in the last
subsection.

3.1. Global distributed control

There are two phases in the GDC algorithm. In
the first phase, the equal partition to assign scanlines
I among N workstations in an interleaved manner
(i.e., I mod N) is sued. This phase consists of two
kinds of process, a master and a slave. The master is
responsible to the collection of the results which are
sent from slaves and to display the image. The
communication diagram for the GDC algorithm in
the first phase is shown in Fig. 2.

In this communication diagram, when a slave
finishes the current scanline, it sends the rendered
results back to the master without waiting for the
arrival of the new job from the master. Because the
computing power of workstations may be different
and the load may be imbalanced, the slaves in the
high computing power or low load workstation will
finish their jobs faster than those in the low comput-
ing power or heavy load workstation. Under the
circumstances, the GDC algorithm will dynamically
adjust the imbalanced workload by the second phase
procedure. The second phase of GDC is described as
follows.

We assume N processors are logically connected
by using a ring structure as shown in Fig. 3.

Pi P j

o-o-o - - -0
I I
o-o-o- - - 0

Pn Pm

Fig. 3. The ring structu~ of N processors

1638 C. Lee et al./ Computer Networks and ISDN Systems 29 (1997) 1635-1644

During rendering, when a processor Pi becomes
idle, it sends a message to its next processor Pj to
request unfinished scanlines. However, there are sev-
eral cases to be considered.

Case 1: If Pi is not idle, P, will send an extra
task to Pi.

Case 2: If the processor Pj has finished its pre-as-
signed tasks (i.e., in the first phase), then Pi will use
the Pi- ,, PiV2, Pim3, . . . , Pk sequence to search an
unvisited processor that is not idle. If Pi finds an
unvisited process P,,, that is not idle, Pi process will
keep its integer task identifier. If Pi wants to request
a new job, Pi will skip the processes between Pi and
P,,, and directly ask a new job from P,,,,

Case 3: If Pi’s next processor c was idle, but Pi
has found a processor P,,, that is not idle. Hence, the
processor Pi sends a message to the processor Pj to
ask a new job, Pi will acknowledge Pi to take a new
job from P,,, instead. Thus, the processor Pi does not
have to waste time to search an unvisited processor
which is not idle.

If Pi has visited itself, then the processor Pi will
terminate.

GDC method is a kind of decentralized parallel
computation environment. In the traditional work-
load method “master-slave”, the master process is
the bottleneck and each slave must wait for the
arrival of new job from the master. However, the
master in the GDC algorithm does not dynamically
adjust load balancing. Each slave must perform real
computation and control its own load balancing. The
communication mechanism is shown in Fig. 4.

TUre

Saw3

Saw2

saw21

1 1 I

I:EidtpndepelpmSim R:ddts C:pzfammrpltatiol

J:newjct,fnxnad-erslave

Fig. 4. The communication mechanism of the GDC algorithm.

3.2. Experiments

In order to evaluate the performance and under-
stand the behavior of many applications on network
computing environment systems, it is necessary to
establish a common experimental protocol. The pro-
tocol should describe what is the system configura-
tion, what application is run, what kinds of data
types and volume are used, what parameters to be
used, how to measure the performance, how change
in parameters affect the performance of the applica-
tion, and how to make improvements. The purpose
of this section is to design and apply the experimen-
tal protocol to evaluate the performance of different
algorithms on the network computing environments.
The parameters considered in the protocol include
environment configuration, data type, problem size,
algorithm selection, number of workstation, and
number of slave. For each experiment fifty data
measurements are taken and the mean and variance
is calculated. The parameters used in the experiments
are briefly discussed in the following sections. The
details are given in [151

3.2.1. Environment configuration
Workstations used for the experiments include

twelve HP 715/33, one Sun Spare 2, and one Sun
Spare 20. The computing power for each type of
workstation is measured by the data to be used in the
experiment. The results are listed in Table 1.

3.2.2. Data type and problem size
To perform the experiments, a set of standard

scenes from Eric Haines’s database [13], called SPD,
is used. The geometric characteristics of three test
scenes - gears, balls, and tetrahedral pyramid -
are shown in Fig. 5a. The complexity of these test
scene data is shown in Table 2. To produce a biased
object distribution, we adjust the view point of the
test scene as shown in Fig. 5b. This change will
result in different variances of pixel computations
over this test scene. The large variance in scene
tends to create difficulty to achieve a good load
balancing. Therefore, to evaluate the soundness of a
load balancing scheme, we control the view points to
allow different variances of pixel computations.

C. Lee et al. / Computer Networks and ISDN Systems 29 11997) 1635-1644 1639

Table 1 Table 2
The relative oower of the different workstations The complexities of three test scene images

Gears Balls HP-UX SPARC 2 SPARC 10 SPARC 20 Tetragonal

Relative power 1 0.442 0.929 1.347

3.2.3. The number of slaves
Since the UNIX based workstation uses time shar-

ing for it tasks. The more slaves are running in the
system, the larger portion of CPU resources is allo-
cated to the slaves. We would to like to know how
the number of slaves affects the speed-up in one
workstation.

3.2.4. Number of workstations
Currently fourteen workstations are used in the

experiments. AS indicated in [15], the order in adding
hosts workstation will slightly affect the speed-up.
Letting a represent for the HP 715/33 workstation,
b represent for the Sun spare 2, and c represent for
the Sun sparc20. Then the sequence to add the
workstation is an ordered set (a, a, a, a, a, a, a, a,
a, a, a, a, b, b, cl.

(b)
Fig. 5. (a) The balance-rendered image data. (b) The imbaiance- Fig. 6. m experimental results for the ball image data under
rendered image data. balance and imbalance.

Time complexity 11.15 1 0.455
Size of structure 1152 rectangles 91 sphems 16 triangles

3.2.5. The algorithm selection
In addition to the GDC algorithm, we use three

other algorithms to compare the performance of the
load balancing. The first one is a static load balanc-
ing scheme called “interleaved” assignment. The
idea is to assign scanline I to workstation I mod N,
where N is the total number of workstations. Since
neighboring scanlines should have similar computa-
tional complexity for ray tracing, the computational
load can be more or less scattered evenly among all
the workstations. The second, a dynamic load bal-
ancing scheme called “master-slave” approach,
which is a popular strategy in network computing

16 -
14 -
12 -
10 -
8 -
6 -
4 -

1640 C. Lee et al. /Computer Networks and ISDN Systems 29 (1997) 1635-1644

(4
rpecdup

16

14

12

IO

8

6

4

2

0

I 3 5 7 9 11 13 15

16
14
12
10

8
6
4
2
0

1 3 5 7 9 11 13 15

Fig. 7. The experimental results for the gear image data under
balance and imbalance.

[16], uses a single master for task scheduling, results
collections and image display, and uses multiple
slaves to perform real computation. The third one is
called a hybrid scheme as proposed in [151, takes
advantage of both “interleaved” and “master-
slave” schemes. There are two phases in the hybrid
scheme where the first phase attempts to reduce the
waiting time (W) in the master-slave scheme and
the second phase attempts to dynamically adjust load
imbalances incurred in simple “interleaved” scheme.

3.3. Results

Some results are shown in Figs. 6-8.
From the experimental protocol, the following

observations can be made:
1. The GDC algorithm gives the best performance

for all types of data.

2.

3.

4.

5.

6.

7.

The hybrid scheme takes the advantage of both
interleaved and master-slave schemes, it gives
the second best performance.
The interleaved algorithm gives the worst perfor-
mance for all types of data. The static load scheme
cannot adapt to the unequal computation power of
workstations that causes the worst performance of
the interleaved algorithm.
The higher the complexity of the image data, the
better the performance in speed-up.
The performance deteriorates under imbalanced
image data. As expected, the performance for the
imbalance image is worse than for the balance
image. They tend to saturate earlier.
The lower the complexity of image data, the
earlier the saturation occurs.
The better linear speed-up is possible, if two
slaves are spawned. When the number of slaves is
increased, the execution time is decreased. But it
is saturated very soon. That means that spawning

apeedup

03
spedup

16

14 -lncr,ewr
12

10 A+

Fig. 8. The experimental results for the tetrahedral pyramid image
data under balance and imbalance.

C. Lee et at. /Computer Networks and ISDN Systems 29 (1997) 1635-1644 1641

a couple of slaves in each workstation will speed
up the execution of the task.

4. System overview

Our system integrates computer graphics, parallel
computing and WWW technologies to provide a
distributed animation environment. With the PVM
software support, our computationally intensive
graphics application can be executed on a set of
machines in the networked environment. The WWW
technology allows our system to be world-widely
accessed via the Internet from different platforms.
Our system consists of three parts: namely, the PVM
console, the R.endering console and the Display con-
sole. We briefly describe each part to some detail as
follows.

4.1. PVM console

The PVM c:onsole as illustrated in Fig. 9 provides
a GUI front-end for users to add or delete a set of
hosts in an interactive manner. Before adding hosts
to the virtual parallel machine, the user can click the
“Initial” button to list all available computing re-
sources in our environment. This information is
shown in the “available machines” subwindow.
Then the user can interactively configure his/her

Fig. 9. The user interface of the PVM console.

Fig. 10. The typical screen of the Rendering console.

virtual machine according to their computing re-
quirement. The user adds any host to the virtual
machine by moving the mouse to the host name
listed in the “available machines” and then press the
arrow button (> > > to confirm this selection. After
this confirmation, the selected host name will be
shown in the “virtual machine” subwindow. Simi-
larly, the user can dynamically delete any host in the
reverse direction (i.e., (<)I. To provide more conve-
nience, the user presses the (> > >) button to add
all hosts into or the (<) button to delete all hosts
from the virtual machine. In addition, we provide an
extra subwindow to show the execution status of the
PVM system. After successfully configuring their
virtual parallel machine, the users must click the
“Cpntinue” button to perform parallel computation
for ray tracing and other applications. Otherwise they
can press the “Halt” button to shut down the entire
PVM system This command kills all PVM tasks,
deletes all hosts from the virtual machine and stops
the PVM system.

4.2. Rendering

After configuring their parallel virtual machine,
the user can proceed to the “Rend&rig” console as
shown in Fig. 10 for ray tracing irnag#s. The “Ren-
dering” console provides options to dynamically
control the process of ray tracing. The functions of
the Rendering console include the specification of

1642 C. Lee et al. /Computer Networks and ISDN Systems 29 (1997) 1635-1644

the file to be rendered, the setting of the position of
the camera, the addition or deletion light sources, the
setting of the background color, the rotation along
X, Y or Z axis, the zooming-in and zooming-out, the
recording and rendering, and the access of the help
manual.

the foreground users. The policy is that of first come,
first served. To avoid the waste of resources in a
global processor pool, the processor will be released
from the users’ processor pool after it is idle for a
certain period of time.

4.3. Display 5. Conclusions and future work

Users can display a static rendered image in the
browser or an animation sequence in an external
viewer, such as XingMPEG player [22]. Of course,
the animation images are compressed into an MPEG
format before rendering results are sent back to the
client to be displayed. A display sample is shown in
Fig. 11.

4.4. Processor management

The processor management module allows users
to allocate processors to execute applications without
interference. A global processor pool is established
by a PVM console for the user at the server site.
Users can allocate a number of processors to form
user’s processor pool from the global processor pool.
However, the user’s processor pools are mutually
inclusive. This allows the load to be uniformly dis-
tributed over the cluster of networked workstations,
without degrading the performance of the usage by

In this paper, a WWW-based interface is incorpo-
rated into a distributed animation system using Java
and Java socket classes. This approach integrates a
collection of function-specific tools into a distributed
and extensible environment. It provides the funda-
mental components such as the WWW browser, the
PVM console, the Rendering console, and 3D anima-
tion. To improve the efficiency of the parallel com-
puting, we have proposed a new load balancing
strategy, called global distributed control to balance
the load in the network processors. In order to
characterize the performance of different algorithms,
we have used an experimental protocol based on the
parameters: problem size, data type, number of
workstation, and environment configuration. Results
show that the global distributed control algorithm
gives the best performance for all types of data
compared with the other traditional algorithms. Cur-
rently, the functions for the collaborative work are
primitive. In our future work, we would like to build
multi-user (collaborative) design and analysis of en-
vironments such that a 3D animation system that can
be created, shared, manipulated, analyzed, simulated,
and visualized by the scientific visualization commu-
nity over a heterogeneous network of workstations.

Fig. 11. The display screen.

Acknowledgements

This research was supported in part by the Na-
tional Science Council of Taiwan, ROC, under con-
tracts NSC-86-2213-E-218-011 and NSC-86-2213-E-
110428.

References

[l] K.M. Chandy, P.A.G. Sivilotti, Toward high confidence
distributed programming with Java: Reliable Thread Li-
braries, in: Proc. Int. Conf. on Software Engineming, 19%.

C. Lee et al. /Computer Networks and ISDN Systems 29 (1997) 1635-1644 1643

El

[31

J. Gosling, F. Yelin, Java Team, The Java Application
Programming Interface, Addison-Wesley, Reading, MA,
19%.
A. van Hoff, S. Shaio, 0. Starbuck, Hooked on Java” Sun
Microsystemls, Mountain View, CA, 1995.

[4] B. Ibrahim, World-wide algorithm animation, http:
//cuiwww.unige.ch/www/Bertrand.Html.

[5] V.S. Sundemm, PVM: A framework for parallel distributed
computing, Concurrency: Practice Experience 2 (1990) 31%
339.

[6] C.H. Cap, V. Strumpen, Efficient parallel computing in
distributed workstation environments, Parallel Comput. 19
(1993) 1221-1234.

[7] J. Arvo. D. Kirk, A survey of ray tracing acceleration
techniques, iin: A.S. Glassner (Ed.), An Introduction to Ray
Tracing, Kluwer, London, 1989, pp. 201-262.

[8] D. Badouel, K. Bouatouch, T. Priol, Distributed data and
control for ray tracing in parallel, IEEE Comput. Graphics
Appl. 14 (1994) 69-77.

[9] C. Giertsen, J. Petersen, Parallel volume rendering on a
network of workstations, IEEE Comput. Graphics Appl. 13
(1993) 16-23.

[lo] T.L. Kay, J.T. Kajiya, Ray tracing complexity scenes, ACM
SIGRAPH 20 (1986) 269-278.

[ll] W. Lefer, Au efticient parallel ray tracing scheme for dis-
tributed memory parallel computers, in: Proc. Parallel Ren-
dering Symp., San Jose, CA, 1993, pp. 77-80.

[12] S. Whitman, A task adaptive parallel graphics renderer, in:
Proc. Parallel Rendering Symp., San Jose, CA, 1993, pp.
27-34.

[13] E. Haines, A proposal for standard graphics environment,
lEF!E Compul. Graphics Appl. 7 (1987) 3-5.

[14] T.Y. Lee, C.S. Raghavendra, J.B. Nicholas, Experimental
evaluation of load balancing strategies for ray tracing on
parallel processor, Integrated Comput.-aided Eng. J. 4 (1997)
(in press).

[15] C.N. Lee, T.Y. Lee, S.F. Hsiao, T.C. Lu, Performance
evaluation for parallel computing on network environments,
J. High Performance Comput. (1996).

1161 D. May, Toward general purpose parallel computers, Mass.
Inst. Technol., Cambridge, MA, 1989.

[17] B.K. Schmidt, VS. Sunderam, Empirical analysis of over-
heads in cluster environments, http://www.netlib.org/
pvm3.

1181 S. Whitman, IDynamic load balancing for parallel polygon
rendering, IEEE Comput. Graphics Appl. 14 (1994) 41-48.

1193 M.B. Carter, K.A. Teague, The hypercube ray tracer, in:
Proc. 5th Distributed Memory Computing Conf., 1990.

[20] H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, Y.
Shigei, Load balancing strategies for a parallel ray tracing
system based on constant subdivision, Visual Comput. 4
(1990) 197-209.

[21] J. Packer, Exploiting concurrency: a ray tracing example, in:
The Transputer Application Notebook, Inmos Ltd., Bristol,
1989.

[22] XingMPEG Player, Xing is a registered trademark of Xing
Technology Corp., Sau Luis Obispo, CA.

Tainan. Taiwan, ROC, in 1% tuid 1982,
respectively, and the Ph.D. degne in
electrical engineering from the Univer-
sity of Washington, Seattle, WA, in
1992.He is an Associate Professor in the
Institute of Computer and Information
Engineering at National Sun Yat-Sen
University, Kaohsiung, Taiwan, since
1992. Prior to joining the faculty he was

a system manger of Intelligent System Laboratory, a teaching
assistant, and a research associate, while pursuing his graduate
studies at the University of Washington. His current research
interests include computer vision, character recognition, computer
graphics, Web and lava computing, Web-based knowledge dis-
covery, and parallel computing.

Tong-Yee Lee was born in Tainan
county, Taiwan, ROC, in 1966. He re-
ceived his B.S. in computer engineering
from Tatung institute of Technology in
Taipei, Taiwan, in 1988, his MS. in
computer engineering from National
Taiwan University in 1990, and his Ph.D
in computer engineering from Washing-
ton State University, Pullman, in May
1995. He is an Assistant Professor in the.
Department of Computer Science and
Information Engineering, National

Cheng-Kung University Tainan, Taiwan. Prior to joining the
Ph.D. program at WSU in 1992, he worked for Hitron Technology
company in 1990 and Tatung company in 1991, in Taipei, Tai-
wan. He has collaborated with institute of computer and informa-
tion engineering at National Sun Yat-Sen University in Koushung,
Taiwan. His research interests include parallel rendering design,
computer graphics, visualization, virtual reality, parallel process-
ing, virtual surgical/medical system, distributed system,-network-
ing, heterogeneous computing, and collaborative computing
framework design.

Taimchi La was born in Pingtung, Tai-
wan, ROC, in 1973. He received the
B.S. in computer science from Soochow
University, Taiwan, in 1995. Currently
he is working toward his Ph.D. degree
in computer and information engineer-
ing at National Sun Yat-Sen University,
Taiwan. His nsearcb iatcnsts ate in the
amas of computer graphics and parallel
computing.

1644 C. Lee et al. /Computer Networks and ISDN Systems 29 (I 997) 1635 -1644

Yao-Tsung Chen received the B.B.A.
degree in management information sys-
tem and M.S. degree in computer and
information engineering from National
Sun Yat-sen University, Kaohsiung,
Taiwan, ROC, in 1995 and 1997, re-
spectively. His research interests include
knowledge discovery, visual program-
ming and World-Wide Web.

